Sirius is the brightest star in the night sky. Its name is derived from the Greek word Σείριος (Latin script: ; . The star is designated Canis Majoris, Latinized to Alpha Canis Majoris, and abbreviated CMa or Alpha CMa. With a visual apparent magnitude of −1.46, Sirius is almost twice as bright as Canopus, the next brightest star. Sirius is a binary star consisting of a main-sequence star of spectral type A0 or A1, termed Sirius A, and a faint white dwarf companion of spectral type DA2, termed Sirius B. The distance between the two varies between 8.2 and 31.5 astronomical units as they orbit every 50 years.
Sirius appears bright because of its intrinsic luminosity and its proximity to the Solar System. At a distance of , the Sirius system is one of Earth's nearest neighbours. Sirius is gradually moving closer to the Solar System and it is expected to increase in brightness slightly over the next 60,000 years to reach a peak magnitude of −1.68. Coincidentally, at about the same time, Sirius will take its turn as the southern Pole Star, around the year 66,270 AD. In that year, Sirius will come to within 1.6 degrees of the south celestial pole. This is due to axial precession and proper motion of Sirius itself which moves slowly in the SSW direction, so it will be visible from the southern hemisphere only. After that time, its distance will begin to increase, and it will become fainter, but it will continue to be the brightest star in the Earth's night sky for approximately the next 210,000 years, at which point Vega, another A-type star that is intrinsically more luminous than Sirius, becomes the brightest star.
Sirius A is about twice as massive as the Sun () and has an absolute visual magnitude of +1.43. It is 25 times Solar luminosity, but has a significantly lower luminosity than other bright stars such as Canopus, Betelgeuse, or Rigel. The system is between 200 and 300 million years old. It was originally composed of two bright bluish stars. The initially more massive of these, Sirius B, consumed its hydrogen fuel and became a red giant before shedding its outer layers and collapsing into its current state as a white dwarf around 120 million years ago.
Sirius is colloquially known as the " Dog Star", reflecting its prominence in its constellation, Canis Major (the Greater Dog). The heliacal rising of Sirius marked the flooding of the Nile in Ancient Egypt and the "dog days" of summer for the ancient Greeks, while to the Polynesians, mostly in the Southern Hemisphere, the star marked winter and was an important reference for their navigation around the Pacific Ocean.
Sirius has over 50 other designations and names attached to it. In Geoffrey Chaucer's essay Treatise on the Astrolabe, it bears the name Alhabor and is depicted by a hound's head. This name is widely used on medieval from Western Europe. In Sanskrit it is known as Mrgavyadha "deer hunter", or Lubdhaka "hunter". As Mrgavyadha, the star represents Rudra (Shiva). The star is referred to as Makarajyoti in Malayalam and has religious significance to the pilgrim center Sabarimala. In Scandinavia, the star has been known as Lokabrenna ("burning done by Loki", or "Loki's torch"). In the astrology of the Middle Ages, Sirius was a Behenian fixed star, associated with beryl and juniper. Its astrological symbol was listed by Heinrich Cornelius Agrippa.
The ancient Greeks observed that the appearance of Sirius as the morning star heralded the hot and dry summer and feared that the star caused plants to wilt, men to weaken, and women to become aroused. Owing to its brightness, Sirius would have been seen to twinkle more in the unsettled weather conditions of early summer. To Greek observers, this signified emanations that caused its malignant influence. Anyone suffering its effects was said to be "star-struck" (, astrobólētos). It was described as "burning" or "flaming" in literature. The season following the star's reappearance came to be known as the "dog days". The inhabitants of the island of Ceos in the Aegean Sea would offer sacrifices to Sirius and Zeus to bring cooling breezes and would await the reappearance of the star in summer. If it rose clear, it would portend good fortune; if it was misty or faint then it foretold (or emanated) pestilence. Coins retrieved from the island from the 3rd century BC feature dogs or stars with emanating rays, highlighting Sirius's importance.
The Romans celebrated the heliacal setting of Sirius around 25 April, Animal sacrifice a dog, along with incense, wine, and a sheep, to the goddess Robigo so that the star's emanations would not cause wheat rust on wheat crops that year.
Bright stars were important to the ancient Polynesians for navigation of the Pacific Ocean. They also served as latitude markers; the declination of Sirius matches the latitude of the archipelago of Fiji at 17°S and thus passes directly over the islands each sidereal day. Sirius served as the body of a "Great Bird" constellation called Manu, with Canopus as the southern wingtip and Procyon the northern wingtip, which divided the Polynesian night sky into two hemispheres. Just as the appearance of Sirius in the morning sky marked summer in Greece, it marked the onset of winter for the Māori, whose name Takurua described both the star and the season. Its culmination at the winter solstice was marked by celebration in Hawaii, where it was known as Ka'ulua, "Queen of Heaven". Many other Polynesian names have been recorded, including Tau-ua in the Marquesas Islands, Rehua in New Zealand, and Ta'urua-fau-papa "Festivity of original high chiefs" and Ta'urua-e-hiti-i-te-tara-te-feiai "Festivity who rises with prayers and religious ceremonies" in Tahiti.
In 1868, Sirius became the first star to have its velocity measured, the beginning of the study of celestial radial velocities. Sir William Huggins examined the stellar spectrum of the star and observed a red shift. He concluded that Sirius was receding from the Solar System at about 40 km/s. Compared to the modern value of −5.5 km/s, this was an overestimate and had the wrong sign; the minus sign (−) means that it is approaching the Sun.
Scottish astronomer Thomas Henderson used his observations made in 1832–1833 and South African astronomer Thomas Maclear's observations made in 1836–1837, to determine that the value of the parallax was 0.23 arcsecond, and error of the parallax was estimated not to exceed a quarter of a second, or as Henderson wrote in 1839, "On the whole we may conclude that the parallax of Sirius is not greater than half a second in space; and that it is probably much less." Astronomers adopted a value of 0.25 arcsecond for much of the 19th century. It is now known to have a parallax of nearly .
The Hipparcos parallax for Sirius indicates a distance of , statistically accurate to plus or minus 0.04 . Sirius B is generally assumed to be at the same distance. Sirius B has a Gaia Data Release 3 parallax with a much smaller statistical margin of error, giving a distance of , but it is flagged as having a very large value for astrometric excess noise, which indicates that the parallax value may be unreliable.
The visible star is now sometimes known as Sirius A. Since 1894, some apparent orbital irregularities in the Sirius system have been observed, suggesting a third very small companion star, but this has never been confirmed. The best fit to the data indicates a six-year orbit around Sirius A and a mass of . This star would be five to ten magnitudes fainter than the white dwarf Sirius B, which would make it difficult to observe. Observations published in 2008 were unable to detect either a third star or a planet. An apparent "third star" observed in the 1920s is now believed to be a background object.
In 1915, Walter Sydney Adams, using a reflector at Mount Wilson Observatory, observed the stellar spectrum of Sirius B and determined that it was a faint whitish star. This led astronomers to conclude that it was a white dwarf—the second to be discovered. The diameter of Sirius A was first measured by Robert Hanbury Brown and Richard Q. Twiss in 1959 at Jodrell Bank using their stellar intensity interferometer. In 2005, using the Hubble Space Telescope, astronomers determined that Sirius B has nearly the diameter of the Earth, , with a mass 102% of the Sun's.
It is notable that not all ancient observers saw Sirius as red. The 1st-century poet Marcus Manilius described it as "sea-blue", as did the 4th-century Avienius. Furthermore, Sirius was consistently reported as a white star in ancient China: a detailed re-evaluation of Chinese texts from the 2nd century BC up to the 7th century AD concluded that all such reliable sources are consistent with Sirius being white.
Nevertheless, historical accounts referring to Sirius as red are sufficiently extensive to lead researchers to seek possible physical explanations. Proposed theories fall into two categories: intrinsic and extrinsic. Intrinsic theories postulate a real change in the Sirius system over the past two millennia, of which the most widely discussed is the proposal that the white dwarf Sirius B was a red giant as recently as 2000 years ago. Extrinsic theories are concerned with the possibility of transient reddening in an intervening medium through which the star is observed, such as might be caused by dust in the interstellar medium, or by particles in the terrestrial atmosphere.
The possibility that stellar evolution of either Sirius A or Sirius B could be responsible for the discrepancy has been rejected on the grounds that the timescale of thousands of years is orders of magnitude too short and that there is no sign of the nebulosity in the system that would be expected had such a change taken place. Similarly, the presence of a third star sufficiently luminous to affect the visible colour of the system in recent millennia is inconsistent with observational evidence. Intrinsic theories may therefore be disregarded. Extrinsic theories based on reddening by interstellar dust are similarly implausible. A transient dust cloud passing between the Sirius system and an observer on Earth would indeed redden the appearance of the star to some degree, but reddening sufficient to cause it to appear similar in colour to intrinsically red bright stars such as Betelgeuse and Arcturus would also dim the star by several magnitudes, inconsistent with historical accounts: indeed, the dimming would be sufficient to render the colour of the star imperceptible to the human eye without the aid of a telescope.
Extrinsic theories based on optical effects in the Earth's atmosphere are better supported by available evidence. Scintillations caused by Turbulence result in rapid, transient changes in the apparent colour of the star, especially when observed near the horizon, although with no particular preference for red. However, systematic reddening of the star's light results from absorption and scattering by particles in the atmosphere, exactly analogous to the redness of the Sun at sunrise and sunset. Because the particles that cause reddening in the Earth's atmosphere are different (typically much smaller) than those that cause reddening in the interstellar medium, there is far less dimming of the starlight, and in the case of Sirius the change in colour can be seen without the aid of a telescope. There may be cultural reasons to explain why some ancient observers might have reported the colour of Sirius preferentially when it was situated low in the sky (and therefore apparently red). In several Mediterranean cultures, the local visibility of Sirius at heliacal rising and setting (whether it appeared bright and clear or dimmed) was thought to have astrological significance and was thus subject to systematic observation and intense interest. Thus Sirius, more than any other star, was observed and recorded while close to the horizon. Other contemporary cultures, such as Chinese, lacking this tradition, recorded Sirius only as white.
Sirius can be observed in daylight with the naked eye under the right conditions. Ideally, the sky should be very clear, with the observer at a high altitude, the star passing overhead, and the Sun low on the horizon. These conditions are most easily met around sunset in March and April, and around sunrise in September and October. Observing conditions are more favorable in the Southern Hemisphere, owing to the southerly declination of Sirius.
The orbital motion of the Sirius binary system brings the two stars to a minimum angular separation of 3 and a maximum of 11 arcseconds. At the closest approach, it is an observational challenge to distinguish the white dwarf from its more luminous companion, requiring a telescope with at least aperture and excellent seeing conditions. After a periastron occurred in 1994,
the pair moved apart, making them easier to separate with a telescope. Apoastron occurred in 2019,
but from the Earth's vantage point, the greatest observational separation occurred in 2023, with an angular separation of 11.333″.
In 2015, Vigan and colleagues used the VLT Survey Telescope to search for evidence of substellar companions, and were able to rule out the presence of giant planets 11 times more massive than Jupiter at 0.5 AU distance from Sirius A, 6–7 times the mass of Jupiter at 1–2 AU distance, and down to around 4 times the mass of Jupiter at 10 AU distance. Similarly, Lucas and colleagues did not detect any companions around Sirius B.
Stellar models suggest that the star formed during the collapsing of a molecular cloud and that, after 10 million years, its internal energy generation was derived entirely from nuclear reactions. The core became convection zone and used the CNO cycle for energy generation. It is calculated that Sirius A will have completely exhausted the store of hydrogen at its core within a billion () years of its formation, and will then evolve away from the main sequence. It will pass through a red giant stage and eventually become a white dwarf.
Sirius A is classed as a type because the spectrum shows deep metallic , indicating an enhancement of its surface layers in elements heavier than helium, such as iron. The spectral type has been reported as which indicates that it would be classified as A1 from hydrogen and helium lines, but A0 from the metallic lines that cause it to be grouped with the Am stars. When compared to the Sun, the proportion of iron in the atmosphere of Sirius A relative to hydrogen is given by meaning iron is 316% as abundant as in the Sun's atmosphere. The high surface content of metallic elements is unlikely to be true of the entire star; rather the iron-peak and heavy metals are radiatively levitated towards the surface.
A white dwarf forms after a star has evolved from the main sequence and then passed through a red giant stage. This occurred when Sirius B was less than half its current age, around 120 million years ago. The original star had an estimated and was a B-type star (most likely B5V for ) when it was still on the main sequence, potentially burning around 600–1200 times more luminous than the sun. While it passed through the red giant stage, Sirius B may have enriched the metallicity of its companion, explaining the very high metallicity of Sirius A.
This star is primarily composed of a carbon–oxygen mixture that was generated by helium fusion in the progenitor star. This is overlaid by an envelope of lighter elements, with the materials segregated by mass because of the high surface gravity. The outer atmosphere of Sirius B is now almost pure hydrogen—the element with the lowest mass—and no other elements are seen in its spectrum.
Although Sirius A and B compose a binary system that is reminiscent of those that can undergo Type Ia supernova, the two stars are believed to be too far apart for it to occur, even if Sirius A swells into a red giant. Nova, however, may be possible.
In 2017, more accurate astrometric observations by the Hubble Space Telescope ruled out the existence of a stellar mass sized Sirius C, while still allowing a substellar mass candidate such as a lower mass brown dwarf. The 1995 study predicted an astrometric movement of roughly 90 Milliarcsecond (0.09 arcsecond), but Hubble was unable to detect any location anomaly to an accuracy of 5 mas (0.005 arcsec). This ruled out any objects orbiting Sirius A with more than 0.033 solar mass (35 Jupiter masses) in 0.5 years, and 0.014 (15 Jupiter masses) in 2 years. The study was also able to rule out any companions to Sirius B with more than 0.024 solar mass (25 Jupiter masses) orbiting in 0.5 year, and 0.0095 (10 Jupiter masses) orbiting in 1.8 years. Effectively, there are almost certainly no additional bodies in the Sirius system larger than a small brown dwarf or large exoplanet.
Several cultures also associated the star with a bow and arrows. The ancient Chinese visualized a large bow and arrow across the southern sky, formed by the constellations of Puppis and Canis Major. In this, the arrow tip is pointed at the wolf Sirius. A similar association is depicted at the Temple of Hathor in Dendera, where the goddess Satet has drawn her arrow at Hathor (Sirius). Known as "Tir", the star was portrayed as the arrow itself in later Persian culture.
In Islamic belief, celestial bodies mentioned in the Qur’an often symbolize divine power and serve as signs ( āyāt) of God's creation. Ibn Kathir, in his commentary on the verse, noted that it refers to the bright star known as Mirzam al-Jawza' (Sirius), which some pre-Islamic Arab tribes used to worship.
The alternative Western name Aschere, once used by Johann Bayer, is derived from this Arabic reference.
Doubts have been raised about the validity of Griaule and Dieterlein's work. In 1991, anthropologist Walter van Beek concluded about the Dogon, "Though they do speak about sigu tolo which they disagree completely with each other as to which star is meant; for some it is an invisible star that should rise to announce the sigu festival, for another it is Venus that, through a different position, appears as sigu tolo. All agree, however, that they learned about the star from Griaule." According to Noah Brosch cultural transfer of relatively modern astronomical information could have taken place in 1893, when a French expedition arrived in Central West Africa to observe the total eclipse on 16 April.
Composer Karlheinz Stockhausen, who wrote a piece called Sirius, is claimed to have said on several occasions that he came from a planet in the Sirius system. To Stockhausen, Sirius stood for "the place where music is the highest of vibrations" and where music had been developed in the most perfect way.Michael Kurtz, Stockhausen. Eine Biografie. Kassel, Bärenreiter Verlag, 1988: p. 271.
Sirius has been the subject of poetry. Dante and John Milton reference the star, and it is the "powerful western fallen star" of Walt Whitman's "When Lilacs Last in the Dooryard Bloom'd", while Tennyson's poem The Princess describes the star's scintillation:
Throughout the 1990s, several members of the occult group the Order of the Solar Temple committed mass murder-suicide with the goal of leaving their bodies and spiritually "transiting" to Sirius. In total, 74 people died in all of the suicides and murders.
Observational history
Kinematics
Distance
Discovery of Sirius B
Colour controversy
Observation
Location
Stellar system
Sirius A
Sirius B
Apparent third star
Star cluster membership
Distant star cluster
Cultural significance
Dog Star
Other canine associations
Range of associations
Iranian mythology and Zoroastrianism
In Islam
In Theosophy
New Year culmination
Dogon
Serer religion
Modern significance
See also
Notes
Bibliography
External links
|
|